extension | φ:Q→Out N | d | ρ | Label | ID |
(C22xD5).1C23 = C2xC20:4D4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).1C2^3 | 320,1147 |
(C22xD5).2C23 = C2xC4.D20 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).2C2^3 | 320,1148 |
(C22xD5).3C23 = C42.276D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).3C2^3 | 320,1149 |
(C22xD5).4C23 = C2xC42:2D5 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).4C2^3 | 320,1150 |
(C22xD5).5C23 = C42.277D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).5C2^3 | 320,1151 |
(C22xD5).6C23 = C2xD10:D4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).6C2^3 | 320,1161 |
(C22xD5).7C23 = C2xDic5.5D4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).7C2^3 | 320,1163 |
(C22xD5).8C23 = C2xC22.D20 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).8C2^3 | 320,1164 |
(C22xD5).9C23 = C23:3D20 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).9C2^3 | 320,1165 |
(C22xD5).10C23 = C24.30D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).10C2^3 | 320,1166 |
(C22xD5).11C23 = C24.31D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).11C2^3 | 320,1167 |
(C22xD5).12C23 = C2xD10.13D4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).12C2^3 | 320,1177 |
(C22xD5).13C23 = C10.2+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).13C2^3 | 320,1182 |
(C22xD5).14C23 = C2xC4:C4:D5 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).14C2^3 | 320,1184 |
(C22xD5).15C23 = C10.52- 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).15C2^3 | 320,1185 |
(C22xD5).16C23 = C10.112+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).16C2^3 | 320,1186 |
(C22xD5).17C23 = C10.62- 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).17C2^3 | 320,1187 |
(C22xD5).18C23 = C42:8D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).18C2^3 | 320,1196 |
(C22xD5).19C23 = C42:9D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).19C2^3 | 320,1197 |
(C22xD5).20C23 = C42.92D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).20C2^3 | 320,1198 |
(C22xD5).21C23 = C42:10D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).21C2^3 | 320,1199 |
(C22xD5).22C23 = C42.95D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).22C2^3 | 320,1202 |
(C22xD5).23C23 = C42.96D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).23C2^3 | 320,1203 |
(C22xD5).24C23 = C42.97D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).24C2^3 | 320,1204 |
(C22xD5).25C23 = C42.98D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).25C2^3 | 320,1205 |
(C22xD5).26C23 = C42.99D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).26C2^3 | 320,1206 |
(C22xD5).27C23 = C42.100D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).27C2^3 | 320,1207 |
(C22xD5).28C23 = C42.102D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).28C2^3 | 320,1210 |
(C22xD5).29C23 = C42.104D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).29C2^3 | 320,1212 |
(C22xD5).30C23 = C42.228D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).30C2^3 | 320,1220 |
(C22xD5).31C23 = Dic10:23D4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).31C2^3 | 320,1224 |
(C22xD5).32C23 = Dic10:24D4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).32C2^3 | 320,1225 |
(C22xD5).33C23 = D4:5D20 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).33C2^3 | 320,1226 |
(C22xD5).34C23 = D4:6D20 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).34C2^3 | 320,1227 |
(C22xD5).35C23 = C42:16D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).35C2^3 | 320,1228 |
(C22xD5).36C23 = C42.113D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).36C2^3 | 320,1230 |
(C22xD5).37C23 = C42.114D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).37C2^3 | 320,1231 |
(C22xD5).38C23 = C42:17D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).38C2^3 | 320,1232 |
(C22xD5).39C23 = C42.115D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).39C2^3 | 320,1233 |
(C22xD5).40C23 = C42.116D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).40C2^3 | 320,1234 |
(C22xD5).41C23 = C42.117D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).41C2^3 | 320,1235 |
(C22xD5).42C23 = C42.118D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).42C2^3 | 320,1236 |
(C22xD5).43C23 = C42.119D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).43C2^3 | 320,1237 |
(C22xD5).44C23 = C42.122D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).44C2^3 | 320,1240 |
(C22xD5).45C23 = Q8:5D20 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).45C2^3 | 320,1248 |
(C22xD5).46C23 = Q8:6D20 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).46C2^3 | 320,1249 |
(C22xD5).47C23 = C42.132D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).47C2^3 | 320,1253 |
(C22xD5).48C23 = C42.133D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).48C2^3 | 320,1254 |
(C22xD5).49C23 = C42.134D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).49C2^3 | 320,1255 |
(C22xD5).50C23 = C42.135D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).50C2^3 | 320,1256 |
(C22xD5).51C23 = C42.136D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).51C2^3 | 320,1257 |
(C22xD5).52C23 = C24.56D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).52C2^3 | 320,1258 |
(C22xD5).53C23 = C24:4D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).53C2^3 | 320,1262 |
(C22xD5).54C23 = C24.33D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).54C2^3 | 320,1263 |
(C22xD5).55C23 = C24.34D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).55C2^3 | 320,1264 |
(C22xD5).56C23 = C24.35D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).56C2^3 | 320,1265 |
(C22xD5).57C23 = C24:5D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).57C2^3 | 320,1266 |
(C22xD5).58C23 = C24.36D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).58C2^3 | 320,1267 |
(C22xD5).59C23 = C20:(C4oD4) | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).59C2^3 | 320,1268 |
(C22xD5).60C23 = C10.682- 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).60C2^3 | 320,1269 |
(C22xD5).61C23 = Dic10:19D4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).61C2^3 | 320,1270 |
(C22xD5).62C23 = Dic10:20D4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).62C2^3 | 320,1271 |
(C22xD5).63C23 = C10.342+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).63C2^3 | 320,1273 |
(C22xD5).64C23 = D20:19D4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).64C2^3 | 320,1281 |
(C22xD5).65C23 = C10.422+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).65C2^3 | 320,1285 |
(C22xD5).66C23 = C10.442+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).66C2^3 | 320,1287 |
(C22xD5).67C23 = C10.452+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).67C2^3 | 320,1288 |
(C22xD5).68C23 = C10.462+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).68C2^3 | 320,1289 |
(C22xD5).69C23 = C10.1152+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).69C2^3 | 320,1290 |
(C22xD5).70C23 = C10.472+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).70C2^3 | 320,1291 |
(C22xD5).71C23 = C10.482+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).71C2^3 | 320,1292 |
(C22xD5).72C23 = C10.742- 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).72C2^3 | 320,1293 |
(C22xD5).73C23 = C22:Q8:25D5 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).73C2^3 | 320,1296 |
(C22xD5).74C23 = C10.532+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).74C2^3 | 320,1309 |
(C22xD5).75C23 = C10.222- 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).75C2^3 | 320,1312 |
(C22xD5).76C23 = C10.232- 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).76C2^3 | 320,1313 |
(C22xD5).77C23 = C10.772- 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).77C2^3 | 320,1314 |
(C22xD5).78C23 = C10.242- 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).78C2^3 | 320,1315 |
(C22xD5).79C23 = C10.562+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).79C2^3 | 320,1316 |
(C22xD5).80C23 = C10.572+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).80C2^3 | 320,1317 |
(C22xD5).81C23 = C10.582+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).81C2^3 | 320,1318 |
(C22xD5).82C23 = C10.262- 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).82C2^3 | 320,1319 |
(C22xD5).83C23 = C10.792- 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).83C2^3 | 320,1320 |
(C22xD5).84C23 = C4:C4.197D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).84C2^3 | 320,1321 |
(C22xD5).85C23 = C10.612+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).85C2^3 | 320,1329 |
(C22xD5).86C23 = C10.1222+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).86C2^3 | 320,1330 |
(C22xD5).87C23 = C10.842- 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).87C2^3 | 320,1334 |
(C22xD5).88C23 = C10.662+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).88C2^3 | 320,1335 |
(C22xD5).89C23 = C10.672+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).89C2^3 | 320,1336 |
(C22xD5).90C23 = C10.852- 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).90C2^3 | 320,1337 |
(C22xD5).91C23 = C10.682+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).91C2^3 | 320,1338 |
(C22xD5).92C23 = C10.692+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).92C2^3 | 320,1339 |
(C22xD5).93C23 = C42.137D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).93C2^3 | 320,1341 |
(C22xD5).94C23 = C42.138D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).94C2^3 | 320,1342 |
(C22xD5).95C23 = D5xC4.4D4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).95C2^3 | 320,1345 |
(C22xD5).96C23 = C42:20D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).96C2^3 | 320,1350 |
(C22xD5).97C23 = C42.143D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).97C2^3 | 320,1353 |
(C22xD5).98C23 = C42.144D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).98C2^3 | 320,1354 |
(C22xD5).99C23 = C42:22D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).99C2^3 | 320,1355 |
(C22xD5).100C23 = C42.145D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).100C2^3 | 320,1356 |
(C22xD5).101C23 = C42.237D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).101C2^3 | 320,1363 |
(C22xD5).102C23 = C42.150D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).102C2^3 | 320,1364 |
(C22xD5).103C23 = C42.152D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).103C2^3 | 320,1366 |
(C22xD5).104C23 = C42.153D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).104C2^3 | 320,1367 |
(C22xD5).105C23 = C42.154D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).105C2^3 | 320,1368 |
(C22xD5).106C23 = C42.155D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).106C2^3 | 320,1369 |
(C22xD5).107C23 = C42.156D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).107C2^3 | 320,1370 |
(C22xD5).108C23 = C42.157D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).108C2^3 | 320,1371 |
(C22xD5).109C23 = C42.158D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).109C2^3 | 320,1372 |
(C22xD5).110C23 = C42.160D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).110C2^3 | 320,1374 |
(C22xD5).111C23 = C42:23D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).111C2^3 | 320,1376 |
(C22xD5).112C23 = C42.163D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).112C2^3 | 320,1381 |
(C22xD5).113C23 = C42.164D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).113C2^3 | 320,1382 |
(C22xD5).114C23 = C42:25D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).114C2^3 | 320,1383 |
(C22xD5).115C23 = C42.165D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).115C2^3 | 320,1384 |
(C22xD5).116C23 = Dic10:11D4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).116C2^3 | 320,1390 |
(C22xD5).117C23 = C42.168D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).117C2^3 | 320,1391 |
(C22xD5).118C23 = C42:28D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).118C2^3 | 320,1392 |
(C22xD5).119C23 = C42.240D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).119C2^3 | 320,1397 |
(C22xD5).120C23 = C42.176D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).120C2^3 | 320,1403 |
(C22xD5).121C23 = C42.177D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).121C2^3 | 320,1404 |
(C22xD5).122C23 = C42.178D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).122C2^3 | 320,1405 |
(C22xD5).123C23 = C42.179D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).123C2^3 | 320,1406 |
(C22xD5).124C23 = C42.180D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).124C2^3 | 320,1407 |
(C22xD5).125C23 = C2xC23.23D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).125C2^3 | 320,1461 |
(C22xD5).126C23 = C2xC20:7D4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).126C2^3 | 320,1462 |
(C22xD5).127C23 = C24.72D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).127C2^3 | 320,1463 |
(C22xD5).128C23 = C2xDic5:D4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).128C2^3 | 320,1474 |
(C22xD5).129C23 = C2xC20:D4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).129C2^3 | 320,1475 |
(C22xD5).130C23 = C24:8D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).130C2^3 | 320,1476 |
(C22xD5).131C23 = C24.41D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).131C2^3 | 320,1477 |
(C22xD5).132C23 = C24.42D10 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).132C2^3 | 320,1478 |
(C22xD5).133C23 = C2xC20.23D4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).133C2^3 | 320,1486 |
(C22xD5).134C23 = C10.442- 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).134C2^3 | 320,1488 |
(C22xD5).135C23 = C10.452- 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).135C2^3 | 320,1489 |
(C22xD5).136C23 = C10.1042- 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).136C2^3 | 320,1496 |
(C22xD5).137C23 = C10.1452+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).137C2^3 | 320,1501 |
(C22xD5).138C23 = C10.1462+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).138C2^3 | 320,1502 |
(C22xD5).139C23 = (C2xC20):17D4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).139C2^3 | 320,1504 |
(C22xD5).140C23 = C10.1472+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).140C2^3 | 320,1505 |
(C22xD5).141C23 = C10.1482+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 160 | | (C2^2xD5).141C2^3 | 320,1506 |
(C22xD5).142C23 = C10.C25 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | 4 | (C2^2xD5).142C2^3 | 320,1621 |
(C22xD5).143C23 = D20.37C23 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | 8- | (C2^2xD5).143C2^3 | 320,1623 |
(C22xD5).144C23 = D20.39C23 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | 8+ | (C2^2xD5).144C2^3 | 320,1625 |
(C22xD5).145C23 = C2xD10.D4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).145C2^3 | 320,1082 |
(C22xD5).146C23 = C23:F5:5C2 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | 4 | (C2^2xD5).146C2^3 | 320,1083 |
(C22xD5).147C23 = (C2xD4):7F5 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 40 | 8+ | (C2^2xD5).147C2^3 | 320,1108 |
(C22xD5).148C23 = (C2xD4):8F5 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | 8- | (C2^2xD5).148C2^3 | 320,1109 |
(C22xD5).149C23 = (C2xQ8):7F5 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | 8+ | (C2^2xD5).149C2^3 | 320,1123 |
(C22xD5).150C23 = C2xC23:F5 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 80 | | (C2^2xD5).150C2^3 | 320,1134 |
(C22xD5).151C23 = C2xD4xF5 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 40 | | (C2^2xD5).151C2^3 | 320,1595 |
(C22xD5).152C23 = D10.C24 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 40 | 8+ | (C2^2xD5).152C2^3 | 320,1596 |
(C22xD5).153C23 = C4oD4xF5 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 40 | 8 | (C2^2xD5).153C2^3 | 320,1603 |
(C22xD5).154C23 = D5.2+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22xD5 | 40 | 8 | (C2^2xD5).154C2^3 | 320,1604 |
(C22xD5).155C23 = C2xC42:D5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).155C2^3 | 320,1144 |
(C22xD5).156C23 = C2xC4xD20 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).156C2^3 | 320,1145 |
(C22xD5).157C23 = C4xC4oD20 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).157C2^3 | 320,1146 |
(C22xD5).158C23 = C2xD5xC22:C4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).158C2^3 | 320,1156 |
(C22xD5).159C23 = C2xDic5:4D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).159C2^3 | 320,1157 |
(C22xD5).160C23 = C24.24D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).160C2^3 | 320,1158 |
(C22xD5).161C23 = C2xD10.12D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).161C2^3 | 320,1160 |
(C22xD5).162C23 = C24.27D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).162C2^3 | 320,1162 |
(C22xD5).163C23 = C2xC4:C4:7D5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).163C2^3 | 320,1174 |
(C22xD5).164C23 = C2xD20:8C4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).164C2^3 | 320,1175 |
(C22xD5).165C23 = C10.82+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).165C2^3 | 320,1176 |
(C22xD5).166C23 = C2xC4:D20 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).166C2^3 | 320,1178 |
(C22xD5).167C23 = C10.2- 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).167C2^3 | 320,1179 |
(C22xD5).168C23 = C2xD10:Q8 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).168C2^3 | 320,1180 |
(C22xD5).169C23 = C2xD10:2Q8 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).169C2^3 | 320,1181 |
(C22xD5).170C23 = C10.102+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).170C2^3 | 320,1183 |
(C22xD5).171C23 = D5xC42:C2 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).171C2^3 | 320,1192 |
(C22xD5).172C23 = C42:7D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).172C2^3 | 320,1193 |
(C22xD5).173C23 = C42.188D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).173C2^3 | 320,1194 |
(C22xD5).174C23 = C42.91D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).174C2^3 | 320,1195 |
(C22xD5).175C23 = C42.93D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).175C2^3 | 320,1200 |
(C22xD5).176C23 = C42.94D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).176C2^3 | 320,1201 |
(C22xD5).177C23 = C4xD4:2D5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).177C2^3 | 320,1208 |
(C22xD5).178C23 = C42:11D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).178C2^3 | 320,1217 |
(C22xD5).179C23 = C42.108D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).179C2^3 | 320,1218 |
(C22xD5).180C23 = C42:12D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).180C2^3 | 320,1219 |
(C22xD5).181C23 = D4xD20 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).181C2^3 | 320,1221 |
(C22xD5).182C23 = D20:23D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).182C2^3 | 320,1222 |
(C22xD5).183C23 = D20:24D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).183C2^3 | 320,1223 |
(C22xD5).184C23 = C42.229D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).184C2^3 | 320,1229 |
(C22xD5).185C23 = C42.125D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).185C2^3 | 320,1244 |
(C22xD5).186C23 = C4xQ8:2D5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).186C2^3 | 320,1245 |
(C22xD5).187C23 = C42.126D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).187C2^3 | 320,1246 |
(C22xD5).188C23 = Q8xD20 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).188C2^3 | 320,1247 |
(C22xD5).189C23 = C42.232D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).189C2^3 | 320,1250 |
(C22xD5).190C23 = D20:10Q8 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).190C2^3 | 320,1251 |
(C22xD5).191C23 = C42.131D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).191C2^3 | 320,1252 |
(C22xD5).192C23 = C24:3D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).192C2^3 | 320,1261 |
(C22xD5).193C23 = D5xC4:D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).193C2^3 | 320,1276 |
(C22xD5).194C23 = C10.372+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).194C2^3 | 320,1277 |
(C22xD5).195C23 = C4:C4:21D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).195C2^3 | 320,1278 |
(C22xD5).196C23 = C10.382+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).196C2^3 | 320,1279 |
(C22xD5).197C23 = C10.392+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).197C2^3 | 320,1280 |
(C22xD5).198C23 = C10.402+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).198C2^3 | 320,1282 |
(C22xD5).199C23 = C10.732- 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).199C2^3 | 320,1283 |
(C22xD5).200C23 = D20:20D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).200C2^3 | 320,1284 |
(C22xD5).201C23 = C10.432+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).201C2^3 | 320,1286 |
(C22xD5).202C23 = D5xC22:Q8 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).202C2^3 | 320,1298 |
(C22xD5).203C23 = C4:C4:26D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).203C2^3 | 320,1299 |
(C22xD5).204C23 = C10.162- 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).204C2^3 | 320,1300 |
(C22xD5).205C23 = C10.172- 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).205C2^3 | 320,1301 |
(C22xD5).206C23 = D20:21D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).206C2^3 | 320,1302 |
(C22xD5).207C23 = D20:22D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).207C2^3 | 320,1303 |
(C22xD5).208C23 = Dic10:21D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).208C2^3 | 320,1304 |
(C22xD5).209C23 = Dic10:22D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).209C2^3 | 320,1305 |
(C22xD5).210C23 = C10.512+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).210C2^3 | 320,1306 |
(C22xD5).211C23 = C10.1182+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).211C2^3 | 320,1307 |
(C22xD5).212C23 = C10.522+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).212C2^3 | 320,1308 |
(C22xD5).213C23 = C10.202- 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).213C2^3 | 320,1310 |
(C22xD5).214C23 = C10.212- 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).214C2^3 | 320,1311 |
(C22xD5).215C23 = C10.1202+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).215C2^3 | 320,1325 |
(C22xD5).216C23 = C10.1212+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).216C2^3 | 320,1326 |
(C22xD5).217C23 = C10.822- 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).217C2^3 | 320,1327 |
(C22xD5).218C23 = C4:C4:28D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).218C2^3 | 320,1328 |
(C22xD5).219C23 = C10.622+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).219C2^3 | 320,1331 |
(C22xD5).220C23 = C10.632+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).220C2^3 | 320,1332 |
(C22xD5).221C23 = C10.642+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).221C2^3 | 320,1333 |
(C22xD5).222C23 = C42.233D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).222C2^3 | 320,1340 |
(C22xD5).223C23 = C42:18D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).223C2^3 | 320,1346 |
(C22xD5).224C23 = C42.141D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).224C2^3 | 320,1347 |
(C22xD5).225C23 = D20:10D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).225C2^3 | 320,1348 |
(C22xD5).226C23 = Dic10:10D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).226C2^3 | 320,1349 |
(C22xD5).227C23 = C42:21D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).227C2^3 | 320,1351 |
(C22xD5).228C23 = C42.234D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).228C2^3 | 320,1352 |
(C22xD5).229C23 = C42.236D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).229C2^3 | 320,1360 |
(C22xD5).230C23 = C42.148D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).230C2^3 | 320,1361 |
(C22xD5).231C23 = D20:7Q8 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).231C2^3 | 320,1362 |
(C22xD5).232C23 = C42.151D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).232C2^3 | 320,1365 |
(C22xD5).233C23 = C42:24D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).233C2^3 | 320,1377 |
(C22xD5).234C23 = C42.189D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).234C2^3 | 320,1378 |
(C22xD5).235C23 = C42.161D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).235C2^3 | 320,1379 |
(C22xD5).236C23 = C42.162D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).236C2^3 | 320,1380 |
(C22xD5).237C23 = C42:26D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).237C2^3 | 320,1387 |
(C22xD5).238C23 = C42.238D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).238C2^3 | 320,1388 |
(C22xD5).239C23 = D20:11D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).239C2^3 | 320,1389 |
(C22xD5).240C23 = C42.171D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).240C2^3 | 320,1396 |
(C22xD5).241C23 = D20:12D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).241C2^3 | 320,1398 |
(C22xD5).242C23 = D20:8Q8 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).242C2^3 | 320,1399 |
(C22xD5).243C23 = C42.241D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).243C2^3 | 320,1400 |
(C22xD5).244C23 = C42.174D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).244C2^3 | 320,1401 |
(C22xD5).245C23 = D20:9Q8 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).245C2^3 | 320,1402 |
(C22xD5).246C23 = C22xD10:C4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).246C2^3 | 320,1459 |
(C22xD5).247C23 = C2xC4xC5:D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).247C2^3 | 320,1460 |
(C22xD5).248C23 = C2xC23:D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).248C2^3 | 320,1471 |
(C22xD5).249C23 = C2xC20:2D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).249C2^3 | 320,1472 |
(C22xD5).250C23 = D4xC5:D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).250C2^3 | 320,1473 |
(C22xD5).251C23 = C2xD10:3Q8 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).251C2^3 | 320,1485 |
(C22xD5).252C23 = Q8xC5:D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).252C2^3 | 320,1487 |
(C22xD5).253C23 = (C2xC20):15D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).253C2^3 | 320,1500 |
(C22xD5).254C23 = C10.1072- 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).254C2^3 | 320,1503 |
(C22xD5).255C23 = C22xC4oD20 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).255C2^3 | 320,1611 |
(C22xD5).256C23 = C22xD4:2D5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).256C2^3 | 320,1613 |
(C22xD5).257C23 = C22xQ8:2D5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).257C2^3 | 320,1616 |
(C22xD5).258C23 = C2xQ8.10D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).258C2^3 | 320,1617 |
(C22xD5).259C23 = C2xD5xC4oD4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).259C2^3 | 320,1618 |
(C22xD5).260C23 = C2xD4.10D10 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 160 | | (C2^2xD5).260C2^3 | 320,1620 |
(C22xD5).261C23 = D5x2- 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | 8- | (C2^2xD5).261C2^3 | 320,1624 |
(C22xD5).262C23 = C42xF5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).262C2^3 | 320,1023 |
(C22xD5).263C23 = C42:4F5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).263C2^3 | 320,1024 |
(C22xD5).264C23 = C4xC4:F5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).264C2^3 | 320,1025 |
(C22xD5).265C23 = C42:8F5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).265C2^3 | 320,1026 |
(C22xD5).266C23 = C42:9F5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).266C2^3 | 320,1027 |
(C22xD5).267C23 = C42:5F5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).267C2^3 | 320,1028 |
(C22xD5).268C23 = C22:C4xF5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 40 | | (C2^2xD5).268C2^3 | 320,1036 |
(C22xD5).269C23 = D10:(C4:C4) | φ: C23/C22 → C2 ⊆ Out C22xD5 | 40 | | (C2^2xD5).269C2^3 | 320,1037 |
(C22xD5).270C23 = C10.(C4xD4) | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).270C2^3 | 320,1038 |
(C22xD5).271C23 = C4:C4xF5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).271C2^3 | 320,1048 |
(C22xD5).272C23 = C4:C4:5F5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).272C2^3 | 320,1049 |
(C22xD5).273C23 = C20:(C4:C4) | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).273C2^3 | 320,1050 |
(C22xD5).274C23 = C2xD10.3Q8 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).274C2^3 | 320,1100 |
(C22xD5).275C23 = C4xC22:F5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).275C2^3 | 320,1101 |
(C22xD5).276C23 = (C22xC4):7F5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).276C2^3 | 320,1102 |
(C22xD5).277C23 = D10:6(C4:C4) | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).277C2^3 | 320,1103 |
(C22xD5).278C23 = (C2xF5):D4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 40 | | (C2^2xD5).278C2^3 | 320,1117 |
(C22xD5).279C23 = C2.(D4xF5) | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).279C2^3 | 320,1118 |
(C22xD5).280C23 = (C2xF5):Q8 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).280C2^3 | 320,1128 |
(C22xD5).281C23 = C24:4F5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 40 | | (C2^2xD5).281C2^3 | 320,1138 |
(C22xD5).282C23 = C22xC4xF5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).282C2^3 | 320,1590 |
(C22xD5).283C23 = C22xC4:F5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).283C2^3 | 320,1591 |
(C22xD5).284C23 = C2xD10.C23 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).284C2^3 | 320,1592 |
(C22xD5).285C23 = C2xQ8xF5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).285C2^3 | 320,1599 |
(C22xD5).286C23 = D5.2- 1+4 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | 8- | (C2^2xD5).286C2^3 | 320,1600 |
(C22xD5).287C23 = C22xC22:F5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).287C2^3 | 320,1607 |
(C22xD5).288C23 = C24xF5 | φ: C23/C22 → C2 ⊆ Out C22xD5 | 80 | | (C2^2xD5).288C2^3 | 320,1638 |
(C22xD5).289C23 = D5xC2xC42 | φ: trivial image | 160 | | (C2^2xD5).289C2^3 | 320,1143 |
(C22xD5).290C23 = C2xD5xC4:C4 | φ: trivial image | 160 | | (C2^2xD5).290C2^3 | 320,1173 |
(C22xD5).291C23 = C4xD4xD5 | φ: trivial image | 80 | | (C2^2xD5).291C2^3 | 320,1216 |
(C22xD5).292C23 = C4xQ8xD5 | φ: trivial image | 160 | | (C2^2xD5).292C2^3 | 320,1243 |
(C22xD5).293C23 = D5xC22.D4 | φ: trivial image | 80 | | (C2^2xD5).293C2^3 | 320,1324 |
(C22xD5).294C23 = D5xC42.C2 | φ: trivial image | 160 | | (C2^2xD5).294C2^3 | 320,1359 |
(C22xD5).295C23 = D5xC42:2C2 | φ: trivial image | 80 | | (C2^2xD5).295C2^3 | 320,1375 |
(C22xD5).296C23 = D5xC4:1D4 | φ: trivial image | 80 | | (C2^2xD5).296C2^3 | 320,1386 |
(C22xD5).297C23 = D5xC4:Q8 | φ: trivial image | 160 | | (C2^2xD5).297C2^3 | 320,1395 |
(C22xD5).298C23 = D5xC23xC4 | φ: trivial image | 160 | | (C2^2xD5).298C2^3 | 320,1609 |
(C22xD5).299C23 = C22xQ8xD5 | φ: trivial image | 160 | | (C2^2xD5).299C2^3 | 320,1615 |